References

  1. U. Junker. 2004. QuickXPlain: preferred explanations and relaxations for over-constrained problems. In Proceedings of the 19th national conference on Artificial intelligence (AAAI’04). AAAI Press, 167–172. [ACM]
  2. A. Felfernig, M. Schubert, and C. Zehentner. 2012. An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26, 1 (February 2012), 53–62. [Cambridge Core]
  3. A. Felfernig, R. Walter, J.A. Galindo, et al. 2018. Anytime diagnosis for reconfiguration. J Intell Inf Syst 51, 161–182 (2018). [Springer]
  4. V.M. Le, A. Felfernig, M. Uta, D. Benavides, J. Galindo, and T.N.T. Tran. 2021. DirectDebug: Automated Testing and Debugging of Feature Models, 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), 2021, pp. 81-85. [IEEE]
  5. V.M. Le, A. Felfernig, T.N.T. Tran, M. Atas, M. Uta, D. Benavides, J. Galindo. 2021. DirectDebug: A software package for the automated testing and debugging of feature models, Software Impacts, Volume 9, 2021, 100085, ISSN 2665-9638. [Elsevier]
  6. DirectDebug’s Original version with an evaluation in GitHub.
  7. An executable evaluation of DirectDebug in CodeOcean.
  8. R. Reiter. 1987. A theory of diagnosis from first principles, Artificial Intelligence, Volume 32, Issue 1, 1987, pp. 57-95, ISSN 0004-3702. [ScienceDirect]
  9. R. Greiner, B. A. Smith, and R. W. Wilkerson. 1989. A correction to the algorithm in reiter’s theory of diagnosis, Artif Intell, vol. 41, no. 1, pp. 79–88. [ScienceDirect]
  10. D. Jannach, T. Schmitz, and K. Shchekotykhin. 2016. Parallel model-based diagnosis on multi-core computers. Journal of Artificial Intelligence Research 55 (2016): 835-887. [JAIR]
  11. D. Jannach, T. Schmitz, and K. Shchekotykhin. 2015. Parallelized Hitting Set Computation for Model-Based Diagnosis. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1). [AAAI]
  12. V.M. Le, A. Felfernig, M. Uta, T.N.T. Tran, and C. Vidal. 2022. WipeOutR: Automated Redundancy Detection for Feature Models, 26th ACM International Systems and Software Product Line Conference (SPLC 2022). [ACM]
  13. An evaluation of WipeOutR algorithms in GitHub.
  14. V.M. Le, A. Felfernig, and T.N.T. Tran. 2022. Test Case Aggregation for Efficient Feature Model Testing, 26th ACM International Systems and Software Product Line Conference (SPLC 2022) - Volume B. [ACM]
  15. V.M. Le, C.V. Silva, A. Felfernig, T.N.T. Tran, J. Galindo, D. Benavides. 2023. FastDiagP: An Algorithm for Parallelized Direct Diagnosis. In 37th AAAI Conference on Artificial Intelligence. AAAI’23, Washington, DC, USA. [AAAI]
  16. An evaluation of FastDiagP algorithm in GitHub.
  17. S. Lubos, A. Felfernig, V.M. Le, T.N.T. Tran, D. Benavides, J.A. Zamudio, D. Garber. 2023. Analysis Operations On The Run: Feature Model Analysis in Constraint-based Recommender Systems. In 27th ACM International Systems and Software Product Line Conference (SPLC 2023). to appear
  18. Source code to accompany the paper Analysis Operations On The Run: Feature Model Analysis in Constraint-based Recommender Systems. GitHub
  19. A. Felfernig, V.M. Le, A. Haag, S. Lubos. 2023. Solving Constraint Satisfaction Problems with Database Queries. In 25th International Workshop on Configuration (ConfWS 2023). Malaga, Spain. to appear
  20. S. Lubos, V.M. Le, A. Felfernig, T.N.T. Tran. 2023. Analysis Operations for Constraint-based Recommender Systems. In 17th ACM Conference on Recommender Systems (RecSys 2023). Singapore. to appear